NUMERICAL INVESTIGATION OF INDUCTION STAGE
OF DEVELOPMENT OF NATURAL CONVEC'fION

E. ‘A. Shtessel', K. V. Pribytkova, UDC 536.25
and A, G. Merzhanov

The process of development of convection in a two-dimensional region of square cross
section, which is heated from below, is investigated numerically. The results are
compared with earlier experimental results.

The process of development of natural convection in a two-dimensional fluid layer was investigated
in [1] based on the measurements of nonstationary fields, It was shown that one of the characteristic fea-
tures of this process is the existence of a period Tof the induction of convection. The experimental results
obtained in {1] were generalized in the form of the following formula: ' '

T, = T0Ra=23Pr—1/6 g4 Pr=>10 and Ra=> 10%

In the present article the process of development of convection is investigated numerically and the
results are compared with the experimental results.

We investigated a region of square cross section filled with an inert fluid and included between two
horizontal plates (y = 0 and y = h), held at constant temperatures T; and T, respectively with T, > T,. The
vertical plates (x = 0, x = h) are thermally insulated, At the initial time the temperature of the fluid is
To.

The nondimensional equations describing the process have the following form:

%"__-3_ Pr (2Vjo = —vp -+ Pr A0 - Ra0i;
T

9 prge A0, yo =0. @)
gt
The initial conditions are:
o, & 0) =0, & 0) =0; (@a)
Boewt 2 @ 4 Boogwr c g
1 1 1
7
7
w
A
L
1 005
=
g 7 17 0 0

Fig. 1. Isotherms and stream functions (Ra = 1.7-10%, Pr=20):2) r =1.2
10-2; b) 2.9-107%;¢) 1-107%, ’

Institute of Chemical Physics of the Academy of Sciences of the USSR, Moscow. Translated from
Inzhenerno-Fizicheskii Zhurnal, Vol. 26, No. 3, pp. 490494, March, 1974, Original article submitted
November 24, 1971,

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 1 001 1. No part of this publication may be r'eproduc'ed,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming,
recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for 315.00.

343



4 - 1%t

| "] fi
% W= " Al
ﬁ% -'j—"— E.:-'—'—:"' g J—:{/AT

405 q a0 qo5%, 4t T

=

Fig. 2. Dependence of § on 7 (a) for different £: 1) ¢ = 0.1; 2)
0.2; 3) 0.3; 4) 0.5; 5). 0.7; 6) 0.8 and dependence of |y | on 7 (b).

and the boundary conditions are:
£=0, 0=1, 0=0 E=1 6=0, =0, u=0: l,g-e—zo,"v’:o, @3b)
, " v

the coordinate ¢ = y/h is directed against the gravitational force.

The following quantities are chosen as the scales of distance, time, velocity, pressure, and tem-
perature:
a . pva .
T v/h, e (T,—T,).
The system of equations (2)-(3a, b) was solved by the method discussed in [2], Rayleigh's number was
varied in the range 10°-5+10%. Prandtl's number was kept constant in the computations and was equal to 20,

h,

The pattern of development of convection is shown in Fig. 1 for Ra = 1.7-10%, Since the pattern is
symmetric, isolines of the stream function are shown on the left and isotherms on the right. In the be-
ginning at the bottom surface of the fluid the convection motion appears in the form of two vortices rotating
in opposite directions, The values of the stream functions increase with time and the vortices move in the
direction opposite to the force of gravity and occupy the entire volume of the fluid, A two-vortex cell is
formed; at the center of this cell the fluid rises and subsides at the thermally insulated edges. The in-
crease in the magnitude of the stream functions and the extension of the vortices to the entire volume of
the fluid is sufficiently rapid, only over a certain time interval, i.e., the induction period of the convec-
tion. The magnitude of the stream function and the nature of development of convection depend on the
Rayleigh number.
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Fig. 3. Dependence of ¢ on ¢ for n = 0.5 for
different instants of time 7 (2): 1) 7 = 2-10~%;
2)3.5°1072;3) 5-107%;4) 1.25-1071;5) 4-1071

and the dependence of 4 on time for different
£ (b):1) £ = 0,3;2) 0.5; 3) 0.754) 0.8,
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= 0.5) and different values of ¢. The dashed lines show the same

: dependence for Ra = 0, The temperature field for Ra = 0 is inde-

\ pendent of 7 and corresponds to the field obtained from the solution
of the problem of nonstationary thermal conductivity in a plane

2
\\>\\ layer [3].

\\\ In the beginning the temperature in the fluid layer increases
only due to thermal conductivity; later the convective motion de-

¥ velops at the lower boundary. The velocity of the fluid does not de-
pend on ¢. Later on an inflection is observed on the heating curves,
which corresponds to a strong contribution of the convective heat
transport in the total transport of heat. This instant coincides with
a sharp burst-type increase of the stream function |y, | in absolute
magnitude (Fig. 2b). The most pronounced bending of the heating
curves appears for sufficiently large £, i.e., for those fluid layers where the thermal conductivity makes
almost no contribution to the heating. The temperature field has two symmetric regions in which the tem-
perature variation in the vertical direction is small,

\ . The dependence of § on T is shown in Fig, 2a for fixed 7 (n
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Fig. 4. Dependence of log Tx
on logRa: 1) computed on a
computer; 2) curve computed
from formula (1),

We shall characterize the effect of convection on the temperature field by the quantity
8=0(, & 7. R —0¢ 7, 0),

where § is the solution of the problem for Ra = 0. The dependence of ¢4 on ¢ is shown in Fig. 3a for 5

= 0.5 and for different instants of time. Before a certain instant ¢ = 0 for all ¢. As the convection develops
4 becomes nonzero only for small values of ¢, i.e., the convection covers a narrow layer at the heated
surface, With time the maximum of ¢ shifts toward larger ¢ increasing in magnitude, i.e., the contribu-
tion of convection to heat transfer becomes significant in the vortex part of the fluid layer. The intensifica-
tion of heat transfer from the lower heated layers of the fluid to the upper colder layers results in a de-
crease of ¢ in the region of small ¢ (i.e., 8 — 8).

Starting from a certain time instant < changes with time quite sharply (for different £), which indicates
a rapid replacement of the conduction regime of heat transfer by the convective regime, The latter per-
mits to determine the period of induction of the convection development 74, starting from which convective
heat transfer through the fluid layer plays an important role in the overall heat transfer. The method of
determining 74 is clear from Fig, 3a; T+ determined in this way coincides with 7« obtained from the depen-
dence | gy, | (7) (see Fig. 2b). The fact that 7, has a weak dependence on ¢, permits to consider a common
Tx for the entire fluid layer. The quantity £ = AT/ T4 (see Fig. 3a) reflects the nature of development of
the convection, At values of Ra slightly different from Rax ¢ is large (of the order of 1) 4nd for Ra = Ra,
the period of induction of the convection is uncertain (i.e,, in this case 1 is equal to the time of heating
of the entire fluid layer),

An investigation of the problem in conditions of Newtonian heat transfer at the vortex surface, i.e,,
for boundary conditions ¢ = 0,9 =0, and £ = 1, —~86/0¢ = Bif, showedthat T4 is practically independent
of the Biot number (Bi). Physically thisisquite clear, since the value of Bi should affect not only the development
of convectionbut also the establishment of the stationary convectiveregime (for Ra > Ray).

The dependence of log 7« on logRa is shown in Fig. 4. It is evident from this figure that the results
of the numerical computation are in good agreement with the experimental results, The computed curve 1
can be described by the following formula for Ra > 2000:
- ARals @)
* Ra—B’ 4
where A = 36, B = 1500, For Ra > B we obtain the dependence 7, ~ Ra"2/? This practically corresponds
to the values Ra > 10*, For Ra — B (B close to Ra, in magnitude) 7 — o,

NOTATION
h is the height of the fluid layer;
n, £ are the dimensionless coordinates;
T is the dimensionless time;
T is the period of induction of convection development;
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T is the temperature;
9 is the dimensionless temperature;
v is the velocity vector;
p is the density;
v is the coefficient of kinematic viscosity;
a is the coefficient of thermal conductivity;
i is the unit vector directed against the force of gravity;
Pr=v/a is the Prandtl number;
Ra is the Rayleigh number;
Rax is the critical Rayleigh number;
Bi is the Biot number,
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